Detecting Intervention Effects in a Cluster-Randomized Design Using Multilevel Structural Equation Modeling for Binary Responses
نویسندگان
چکیده
Multilevel modeling (MLM) is frequently used to detect group differences, such as an intervention effect in a pre-test–post-test cluster-randomized design. Group differences on the post-test scores are detected by controlling for pre-test scores as a proxy variable for unobserved factors that predict future attributes. The pre-test and post-test scores that are most often used in MLM are summed item responses (or total scores). In prior research, there have been concerns regarding measurement error in the use of total scores in using MLM. To correct for measurement error in the covariate and outcome, a theoretical justification for the use of multilevel structural equation modeling (MSEM) has been established. However, MSEM for binary responses has not been widely applied to detect intervention effects (group differences) in intervention studies. In this article, the use of MSEM for intervention studies is demonstrated and the performance of MSEM is evaluated via a simulation study. Furthermore, the consequences of using MLM instead of MSEM are shown in detecting group differences. Results of the simulation study showed that MSEM performed adequately as the number of clusters, cluster size, and intraclass correlation increased and outperformed MLM for the detection of group differences.
منابع مشابه
Multilevel Regression and Multilevel Structural Equation Modeling
Multilevel modeling in general concerns models for relationships between variables defined at different levels of a hierarchical data set, which is often viewed as a multistage sample from a hierarchically structured population. Common applications are individuals within groups, repeated measures within individuals, longitudinal modeling, and cluster randomized trials. This chapter treats the m...
متن کاملAnalyzing indirect effects in cluster randomized trials. The effect of estimation method, number of groups and group sizes on accuracy and power
Cluster randomized trials assess the effect of an intervention that is carried out at the group or cluster level. Ajzen's theory of planned behavior is often used to model the effect of the intervention as an indirect effect mediated in turn by attitude, norms and behavioral intention. Structural equation modeling (SEM) is the technique of choice to estimate indirect effects and their significa...
متن کاملSocio-Economic Status, Self-efficacy and Mathematics Performance: A Multilevel Structural Euation Model
Purpose: The purpose of this study was to investigate the effect of socioeconomic status on individual and combination effects, and resilience to academic performance. Methods: For this purpose, 600 students who were selected by two stage cluster sampling methodology completed the Martin and Marsh Resiliency Questionnaire (2006) and their parents answered the International Socioeconomic Status ...
متن کاملStructural Equation Modeling Approaches for Analyzing Partially Nested Data.
Study designs involving clustering in some study arms, but not all study arms, are common in clinical treatment-outcome and educational settings. For instance, in a treatment arm, persons may be nested in therapy groups, whereas in a control arm there are no groups. Methodological approaches for handling such partially nested designs have recently been developed in a multilevel modeling framewo...
متن کاملUsing structural-nested models to estimate the effect of cluster-level adherence on individual-level outcomes with a three-armed cluster-randomized trial.
Much attention has been paid to estimating the causal effect of adherence to a randomized protocol using instrumental variables to adjust for unmeasured confounding. Researchers tend to use the instrumental variable within one of the three main frameworks: regression with an endogenous variable, principal stratification, or structural-nested modeling. We found in our literature review that even...
متن کامل